Pre-Tour Briefing Agenda

	(1)	Overview of Presenters Transport 8 USCS (DWB Flow (WO Network)	Jon Burau (USGS) (20 min)
		Transport & USGS/DWR Flow/WQ Network	
	(2)	Overview of <u>Lucas and Thompson (2012)</u> and/or <u>Lucas et al. (2006)</u>	<u>Lisa Lucas (USGS) (15 min)</u>
	(3)	Bivalve monitoring in the central Delta	Jan Thompson (USGS) (15 min)
	(4)	Harmful algal blooms and nutrients in a complex system	Tamara Kraus (USGS) (20 min)
	(5)	How the emergency drought barrier affected water quality and water age	d
-	(6)	Hydrodynamic Modeling at Franks Tract	Eli Ateljevich (DWR) (15 min)
	(7)	Where are we going?	Jon Burau (USGS) (2 min)

Transport in Central Delta

(How stuff moves around)

and

USGS/DWR Flow Station Network

(How we measure how stuff moves around)

Aquatic Ecosystem Function

Map of Hydrodynamic Transport Regions

Delta hydrodynamics are dominated by the tides

Tidal Excursions are long

Two examples of Transport in the Delta:

(1) Salinity (water supply, Ag)

(2) **Turbidity** (primary production, delta smelt, etc.)

Salt Transport in the Delta

Salt Field (Sept–Oct, 2015: Drought Barrier out) Constant point in **Time**

Transport of Constituents occurs in two ways

- (1) Net flows (Rivers, exports)
- (2) Tidal Dispersion (tides interacting with landscape

Tool: Constituent Flux Decompositions

False River Salt Flux example

Numerous Breaches

Numerical Dye Release

Velocity Distribution: Jets

Suspended Solids (turbidity) Transport

Georgiana Slough is the main source of turbidity in the Central and South Delta

Flooded Islands act like settling basins

Turbidities drop dramatically across Franks Tract

USGS/DWR flow/WQ network

USGS Flow/WQ Station Network Salient Features (I)

Regional Scale

Designed to measure fluxes between regions

WQ is paired with flow to compute fluxes

Many of stations located within a tidal excursion

USGS Flow/WQ Station Network Salient Features (II)

- Acoustic Telemetry data will be collected at flow stations (physical covariates collected with biological data)
- Should collect all fisheries data at flow stations (Wireless data dump)

Constituent Tracker

A **Web App** that generates Delta-Scale Water Quality Fields based on time series data

This tool aggregates (leverages) all of the fixed-site Water Quality time-series data collected in the Delta

Examples of management challenges the Constituent Tracker can address

Turbidity Field First Flush (Jan 14-27, 2019) Constant point in **Tide**

Where are we Going?

